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I. INTRODUCTION

The basic aims of this paper are to study the convergence in the uniform
norm of particular Pade approximants to e-Z on certain unbounded sets in
the complex plane. After some preliminary results are developed in Section 2,
we consider in Section 3 the convergence of Pade approximants to e- Z on the
ray {z = x + iy: x > 0, y = OJ. In Theorem 3.1, we give a necessary and
sufficient condition for the uniform convergence of a sequence of Pade
approximants to e- Z on this set, while in Theorem 3.2, we give a sufficient
condition for the geometric convergence of a sequence of Pade approximants
to e- Z on this set. Also, an application of these results to the problem of
constrained Chebyshev rational approximations to e' l' on [O.+- CD) is
included in this section.

In Section 4, the geometric convergence of the particular Pade approxi­
mants {R().n{z)}~~() to e- O on unbounded parabolic-like sets in the complex
plane is derived in Theorem 4.1, while in Theorem 4.3, it is shown that the
particular Pade approximants {Rn-l.t,(Z)}~'l and {Rn-2.n{Z)}~~2 converge
uniformly to e- Z on the sectors S6 {z re i8 : I (J i (7T/2) - oj, for any
o < 0 :s; (7T/2).
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2. NOTATION AND PRELIMINARY RESULTS
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We shall make of the following notation. Let 7Tm denote the set of all
complex polynomials in the variable Z having degree at most m, and let
7Tv,n denote the set of all complex rational functions 'v,n(z) of the form

'v n(z) = qv.n«Z)) where qv n E 7Tv ,Pv n E 7Tn ,Pv nCO) = 1.. Pv.n Z . . .

Then, given any function fez) = L~~o akzk analytic in a neighborhood of
z = 0, and given any nonnegative integers v and n, the (v, n)-th Pade approxi­
mant to fez) is defined as that element Rv.n E 7Tv,n for which the following
expreSSIOn,

fez) - Rv.n(z) = 0(i z im) as I z i -->- 0, (2.1)

is valid with the largest integer m. In the case that fez) = e-z , the (v, n)-th
Pade approximant Rv.n(z) o::=c Qv.n(z)jPv.n(z) of e-Z is explicitly given by
(cf. [12, p. 433; 15, p. 269])

v (v,n-k)!v!(-zy
Qv.n(z) =0 I~O (v -+- n)! k! (v - k)! '

and

n (v + /l -- k)! n! Zk
pv.n(z) o::=c h~O (v -+- n)! k! (n - k)!

It is further known that (cf. [11; 12, p. 436; 14]), for finite z,

_, (-I)v zn~v+l II
Ev.n(Z) ~ Rv.n(z) - e ' = ( , )' zP () etZtV(l - t)n dt.

n TV. e v.n Z 0

In particular, this expression shows that (2.1) is always valid with

m=n+v~l.

(2.2)

(2.3)

(2.4)

when fez) = e-Z
• Moreover, as pv.n(x) ~ 1 from (2.3) for all x ~ 0, it also

follows from (2.4) that the error, Ev.n(X), for the (v, n)-th Pade approximant
to e-x , is of one sign for all x ~ 0. It is convenient to define the numbers
YJv. n as

YJv.n == sup{1 Ev.n(x)1 : x :> O} = II R v•n - e-X IIL",[O.co] . (2.5)

We begin with

PROPOSITION 2.1. YJv.v = 1 for all integers v :> 0.
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Proof First, assume v ~~ 2),) ;?: O. From (2.4), E2i.2iCx) 0 for all x ~ O.
Next, it is clear upon comparing coefficients in (2.2)-(2.3) that R 2i ,2;(X) :s:; 1
for all x ;?: 0, with R2i •2i(X) ---->- 1 as x ---->- ~. 00. Hence,

I - e~X :s:; 1 for all x ;?: 0,

with E2i.2i(X) ---->- I as x ->- i 00. Thus it follows that 'l}2i.2i = l.
Assuming v = 2) + 1,) 0, note that Q2i+1.2i+1(X) = P 2i+1.2i+l( -x) for

any real x. Thus, we can write R2i+1.2i+1(X) == P 2i+1.2i-H( ~-X)/P2i+l.2i-H(X),or
equivalently,

R· . (x) - {P2i+1.2i+1(X) + P 2i+1.2i+1(-X)} - I D II
21+1.21+1 - P

2
i+1.2ii-1(X) or a x.

But from (2.3), {P2i+1.2i+1(X) + P 2i+1.2i+1(-x)} ='-= P2;(X), a polynomial of
degree 2), is a positive sum of even powers of x with constant term 2, so that
trivially P2i(X) ;?: 1 for all x ;?: O. Next, by comparing coefficients, it is easy to
verify from (2.3) that P 2i+1,2i+l(X) :s:; eX for all x ;?: 0. Thus, from (2.4),

~ -x 1, _
0-. e - ~ T 1 - - I, for x ;? 0,
~ eX

with -E2i+1.2i+1(X) ---->- I as x ---->- 00. Thus, 7]2i+1.2i+1 = I. Q.E.D.

We now state an identity in (2.6), which can be obtained by directly
appealing to the definitions of Qv,n and P",n in (2.2) and (2.3).

LEMMA 2.2. For any v ;?: 0, n ;? 1,

With these results and with the definition of 'Y}v.n in (2.5). we now prove

THEOREM 2.3. For any nonnegative integers v and n with n > v,

Thus,

n
'Y}v,n ~ (2n + v) 'l}v,n-1 . (2.7)

n-v .!' 1'-/ll( Vi.! ),;::
'l}v.n ~ i~l 3v + 2) "" 2n - v '

for all O:S:; v < n. (2.8)
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Proof Using (2.4), we see that (-I)v Ev.nCX) ?' 0 for all x ?' O. Because n
exceeds v by hypothesis then Ev.n(X) --->- 0 as x ---->- + 00. Hence, there exists a
~ > 0 for which (-l)v Ev.n(~) = 1}v.n , and <.n(~) = O. Now, from (2.4), we
can write

Thus, on differentiating the above expression and evaluating the result at
x = ~, we obtain since E~.nC~) = 0 that

(-I)" Ev.nWe"[Pv.nW + P:.nW] = (--1)" :x [exQv.n(x) - pv.n(x)llx~".

Hence, from (2.6) of Lemma 2.2,

(-1)" E,.nWe"[Pv.n(t) + p~.nW] = i;;vv~ [e"Qv.n-1(~) - p v.n- 1W]. (2.9)

Now, from (2.3), it is easy to verify that p~.n(x) = (n/(n + v)) pv.n-tCx) for
all x, and that pv.n(x) ?' pv.n-tCx) for all x ?' O. Thus,

(-I)" Ev.nW e"[Pv.nW + P:.nW] ?' e;l~;) (-1)" Ev.nW e"Pv.n-1(~)'

Using (2.9), this implies that

or

o /(-l)v (C)/ (-I)vn [R (C) _ _"]_ (-l)vn (C)
~ Ev.n S <::: (2n + v) v,n-1 S e - (2n + v) Ev.n-1 S '

Since (-I)v Ev.n(t) = 1}v.n and since (-I)v Ev,n-1(t) ~ 1}v,n-1' then

1}",n ~ (2n ~t J 1}v.n-1 ,

the desired result of (2.7), By induction on the above inequality, it follows
that

the last expression following from Proposition 2.1. But as each term in the
above product is at most i, then we obtain the desired result of (2.8).

Q,E.D.
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We remark that the inequality of (2.8) reduces in the case v = 0 to

7)u,n 1/211
,

which was first established in Cody, Meinardus, and Varga [2].
For the special case v = n - 1, we note that the inequality of (2.7), coupled

with Proposition 2.1, gives simply

- (' /I )7)n-l,nC~ 3/1 _ I .. for all /1:?: 1,

which implies only the boundedness of the sequence {YJn-l.n}~o"l . Actually,
for our later use in Theorem 3.1, we need that 7]n-1,n tends to zero as n ~ 00,

but we prove the following stronger result.

PROPOSITION 2.4. There exist positive constants A1 and A2 such that

for all /I > 1. (2.11 )

Proof With definitions in (2.2) and (2.3), it is easy to show, by comparing
coefficients, that

j Rn-l.n(x)j = I ~n-I.niXj I -( Qpn-1,n(;-)X) "';;; (1 -+- X )-1
n--l,n X n-l,n\x \ 2n - 1

for all x :); 0, n ?' I. Thus, from (2.4),
x ,-1

2n =T) , x O. (2.12)

On the other hand, the integral representation in (2.4) gives us that

which can be written in the form

X2n 1

I En-l,n(X) 1 = (2 _ 1)' P () J e-tXt n(1 - t)n-1 dt,
n . n-l,n X 0

x :?: 0,

x :?: O.

A simple calculation shows that the above integrand, considered as a function
of t E [0, 1] is maximized when t = un(x), where

2n
0< u (x) = < I,

n - (2n - 1 + x) + ((2n - 1 + x)2 - 4nx)l/2
n>l.

(2.13)
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Thus, 1 En-1.nCX)[ can be bounded above by
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x?o 0.

Next, it follows from (2.3) that Pn-1.n(x) ?o ((n - 1)! xn/(2n - I)!) for all
x ?o 0, so that

! E (x) 1 <: [x' un(x)]n (I - un(x)}n-1 °
,n-1.n '-". (n _ I)! ex./t,,(x) , x;:..:;:,

and since ex·/tnl x) ?o (x . un(x))"/n! and since e- un1x ) ?o I - un(x) :> 0, then
the above inequality implies that

x o. (2.14)

Consequently, from (2.12) and (2.14),

I E (x)' /' min Ine-<n-1)'u,,(x). e-x .+. (1 + 2n''- I )-ll, x > O.
I n-1.n· I~"I' ) -

Now, let CX n = n2/(6 In n), n :> 1. For all x ?o CX n , it is clear that

, X )-1 ( cx )-1 In 11
e- x

" (I + < e-an + I + n < A -- ,
2n - I 2n - I n

(2.15)

x ??- i~n ,

(2.16)

for some positive constant A independent of n. Next, usmg (2.13), for

0< x < CX n ,

( ) :>-: 2n '> n "-. 3 In n
Un X ~ 2(2n - 1 + x) / 2n - I + CX n ~;~ ,

for all n sufficiently large. Hence,

for 0 < x < CX n • (2.17)

Consequently, using (2.15)-(2.17) and the definition of 'Y)v.n in (2.5), then

7]n-1.n < A 2(1n n)/n

for aU n :> 1.
To obtain the first inequality of (2.11), we first write Pn-1.n(x) in the form

n! n n (n - 1 + m)!
Pn-1.n(x) = (2n - I)! x m~o (n - 111)1 m1 x m '

x =I=- O.
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(11 -- 1 +- m)! _ l1(n2 - I) ... [11 2 - (m- 1)2] <' n2m - 1

(11 - m)! m! - m ! ~ m! '

the above sum can be bounded above by

°~ m ~ 11,

/ n! x" n (n 2/x)/11
Pn-Ln(X) ~ . (2 1)' I ~-,-

11 11 - • m~O 111.
x 0.

Now, let x = 2n2
• Since e1

/
2 < 2, this implies that

(211 -- I)! . (2.18)

To obtain a similar lower bound for Qn-I.n(x), we first write Qn-Ln(x) in the
form

(11 - I)! .y"-l n-] (11- m)! (-1)'"
(_I)n-1 Qn-l,n(X) = (2n __ I)! I In! (n _. 1 _ m)! x m ' X 7 0.

m=O

For x = 2n2, the above sum is an alternating sum with strictly decreasing
terms, so that (_I)n-l Qn_l.n(2n2) exceeds the sum of the first two terms:

(11 - I)! (2n2}"-1 • (n 2 I- 1)
2n . (2n - I)!

(2.19)

Thus, from (2.18) and (2.19),

(-- 1)11-1 Qn_l,n(2n2) __ (n 2 -+- I)
Pn_Ln(2n2) - 8n3

so that (_l)n-1 En_Ln(2n2) (n 2 -I- 1)/8n3 -- (_I)n-l e-2112
• It is thus clear

that

11--1 2 -_. Al(-I) En - 1 ,,(2n ) oC/ ~,. n

which implies the first inequality of (2.11). Q.E.D.

3. THE CONVERGENCE OF PADE ApPROXIMANTS TO e- x ON [0, ·i co)

Based on the results of the previous section, we now establish the con­
vergence of particular Pade approximants to e-X on the infinite segment
[0, +- co). Actually, we are interested in two kinds of convergence, namely,
the uniform convergence and, more particularly, the geometric convergence
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of sequences of Pade approximants to e-X on [0, + (JJ). We first treat uniform
convergence in

THEOREM 3.1. The sequence {Rv(n) .n}~~I of Pade approximants converges
uniformly to e-X on [0, (JJ) if and only if v{n) < n for all n sufficiently large.

Proof Assume first that v(n) < n for all n ~ no. From (2.7) and (2.8),
we have that

(3.1 )

and that

(3.2)

How, given any E > 0, there is, from Proposition 2.4, an niE) such that
7]n.n+I < E for all n > nI(E). We may assume that nI(E) ~ no. Next, choose
n2(E) > nI(E) such that 2-n 2(E)+n,(€) < E. Consider then any n ~ n2(E). If
°:'( v(n) :'( nI(E), then using (3.2),

On the other hand, suppose that nI(E) < v(n) :'( n - 1. With the inequality
of(3.1) and the fact that 7]n.n+1 < Efor all n > nI(E), then 7]v(n),n < E. Thus,
for any n ~ n2(E) and for any v(n) with v(n) < n, we have that 7]v(n),n < E.

Conversely, assume that {7jV<n),n}~~1 converges to zero as n --+ 0). Since
YJv,n is finite only if v :'( n, and since YJv,v = I for all v ~ °from Proposition
2.1, then evidently v(n) < n for all n sufficiently large. Q.E.D.

To establish a sufficient condition for the geometric convergence of certain
Pade approximants to e-X on [0, + (JJ), we need only use (2.8) of Theorem 2.3
to prove

THEOREM 3.2. lflim SUPn_ro {IT;,:-~(n) (v(n) + j)/(3v(n) + 2j)pln =, ex < 1,
then the sequence ofPade approximants {Rv(n).n(x)}~~1 converges geometrically
in the uniform norm to e-X on [0, + (JJ), i.e.,

(3.3)

As a special case, iflim sUPn_ro (v(n)/n) = fJ < 1, then

(3.4)
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While the result of Theorem 3.2 establishes a sufficient condition for the
geometric convergence of the Pade approximants {Rv(n).n(X)}:~1to e-X on
[0, +w), it is not known whether this condition is also necessary. On the
other hand, from the lower bound in Proposition 2.4, i.e.,

Al _
-'-I ~ YJn-l.n , forall n ~ I,

it is clear that the particular Pade approximants {Rv(n),nCx)}:~lwith v(n) c=

n - I, for which lim SUPn_x (v(n)jn) I, cannot possess geometric con­
vergence to c-X on [0,'- w). More generally, it can be shown that no sequence
of the form {Rn-",n}:~", fJ., > 1 fixed, converges geometrically on this ray.

It is interesting to note that the result of Theorem 3.2 has applications to
the problem of constrained Chebyshev rational approximations to e-O

; on
[0, +w). We use the following notation. Let iTm be the set of all real poly­
nomials of degree at most m, let iTv, n be the set of all real rational functions
rv,n(x) of the form rv,n(x) = qv,n(x)/pv,,,(x), where q",,, E iTv , and Pv,,, E iTn ,
and Pv,,,(O) == I, and, for any nonnegative integer k with° k n ..l- v _c_ I,
let iT~~~ be the subset of those rv,n in iTv,n for which

C'X
- I'v,n(x) ...~ e(1 x 11.), x real, Ix+ 0.

Then, for any nonnegative integers fl, 1', and k with ° v ,.-;:; n and with°,.-;:; k ,.-;:; n +- v + 1, the constrained Chebyshev constants A~~;, for c·-x on
[0, +- w) are defined as

(3.5)

For the special case k 0, these (unconstrained) Chebyshev constants
for c-X have been studied in [2], Newman [8], and SchOnhage [13]. Note that
because the (v, n)-the Pade approximant R,.,n is real, i.e., Rv ,,, E iT,.,n, the
special case k = n + 1'+- I is, from (2.5) such that A~~',7v+l) YJv,,, .

Recently, J. D. Lawson [5] has considered the particular constrained
Chebyshev constants A~~;;I) for e-X on [0, +w), and, from his computed
values of A~~;;I) for 2 n 5, one would naturally suspect the geometric
convergence of these constants to zero. That this is theoretically so can be
seen to be a special case of

THEOREM 3.3. Assume that the sequence of nonnegatil'e integers
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satisfying 0 ~ k(n) ~ 2n -!- 1 for every n ~ 0, has the property that

. ( k(n) ~ (n -i I) )
lim sup = ex < I,

n-F/) 11
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(3.6)

and define 8 = max(O, ex). Then, for any sequence of nonnegatire integers
{m(n)}~~o satisfying max{O; ken) - (n -+ I)} ~ men) 'S; n,

(3.7)

Proof First, set v(n) = max{O; ken) - (n + I)}, so that 0 ~ F(n) ,,;;; n.
From the integral representation in (2.4), the Pade approximant Rv(n),n(x) to
e-:r evidently satisfies

x [-~ 0,

for each n 0, and hence, from the definition of F(n),

x -,. O.

.. h ~ 0 Th R ~(k("I) C ~(k(nl) .. • t () 'thtor eac n:?-. us, v(n),n E7TV (I1.).11. 7Tmp'),n lor any III eger m n WI

F(n) ~ men) 'S; n. Hence, by definition.

for each 11 O.

But using (3.4), we have that

{
.\ (/dn) 1] In

m(n),nJ

so that applying the hypothesis of (3.6) establishes the last inequality of (3,7).
On the other hand, Newman [8] has shown that for any polynomials p,
q E Tr n ,

I
-x p(x) 1- 1

o~~~x e - q(x) ~> (1280)n+i'

which establishes the first inequality of (3.7). Q.E.D.

We remark that a stronger result, analogous to (3.7), can be similarly
established from the inequality (2.10).
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4. THE CONVERGENCE OF PARTICULAR PADE ApPROXIMANTS TO e-z ON

UNBOUNDED REGIONS

In this section, we shall be concerned with the convergence, in the uniform
norm, of particular Pade approximants to e- Z on unbounded sets in the
complex plane which are symmetric with respect to the positive ray
o :S;; x < 00. To begin, let snCz) L;,'~o zl'/k! denote the familiar n-th partial
sum of eZ

• Then, it is clear from (2.2)-(2.3) that the (0, n)-th Pade approxi­
mant Ro,n(z) of e-': is given by

(4.1)

Thus, the poles of the Pade approximant Ro,n are the zeros of Sn . It is further
known that the parabolic region T in the complex plane, defined by

where

T == {z = x + iy : x ;:-J: 0 and 1 y I :S;; dXl ;2}, (4.2)

d < 0.863 369 712, (4.3)

contains no zeros of any Sn , i.e., I/sn is analytic in T for all n sufficiently
large. That such a parabolic region with this property could exist was first
indicated by the numerical results of ]verson [4], and the existence of this
region was later established l by Newman and Rivlin [9].

The special case v = 0 of (2.8) of Theorem 2.3, coupled with (4.1), implies
that

(4.4)

for all n ;:?o 0, and moreover, from Theorem I of Meinardus and Varga [6],

we have that

. )'11 -r I I; /l/n Ihm e' - -_.. " = ".
n-<'c ! Sn(X) ilL [0 ex] \ 2en •

(4.5)

It is natural to ask if the sequence {l/srJ;;~l converges geometrically to e-X on
some larger set in the complex plane, especially when we know that lis" is
analytic in the parabolic region T of (4.2), for all n. That this is so is

1 Strictly speaking, the above-mentioned property of T, as stated in [9], does not foHow
completely from results of [9], but depends additionally on a subsequent note by Newman
and Rivlin [10].
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established in the following result. For added notation, if S is any set in the
complex plane and f is defined on S, we write

Ilflk,,(nl = supt f(z)1 : z E S}.

THEOREM 4.1. Let g be a positive continuous function on [0, + (Y.) which
satisfies

I· g(x) f*
1m. (.)1/2 = ( "X-j-LOO X

d* ;;?: 0, (4.6)

(4.7)d* < 0.184 130 824,e.g.,

and let C {z = x 1- iy : x ;;?: °and )' I ~ g(x)}. If(cf (4.2»

(2)1/2 - 1
d* < d ( (2)1/2 + 1 ) ,

then the sequence {I /sn} ;;'~1 concerges geometrically to e~Z on C. In particular,
if d* of (4.6) is positive, then

. 'II -z 1 II ,l/n 1 d + d* )21J~}~,UP / e - Sn La/GlI ~ 2( d _ d* < 1,

while if d* cc= 0, then

(4.8)

(4.9)

Proof By way of construction, it is possible from (4.7) to choose
positive numbers do and d1 such that d* < do < dl < d and such that
t{(dl + do)/(dl - do)j2 < 1. With these positive numbers, the sets Ti are
defined:

T, == {z = x + iy : x ;;?: ° and I J' I ~ d,X l
/
2
}, i = 0, I,

and hence To C T l . Next, it is clear from (4.6) that there is a finite a ~~ 0 such
that the subset Ca == {z = x + iy: z E C and x ;;?: a} of C satisfies

CaC To.

(4,10)

Next, since the zeros of the sn's have no finite limit point, i.e., if {z~n)};~l denote
the zeros of Sn , then limn~o-. {minl';;j';;" I zj") I} = + 00, then for all n suffi­
ciently large, say n ;;?: no , each Sn is free of zeros in the sets To , T1 , and G.

Continuing our construction, for each t ;;?: 0 and each f3 > 0, let met, (3) be
the interval [t - f3t 1 / 2, t + }3t l / 2] of the real axis. For t ;;?: f32, met, (3) lies
entirely on the nonnegative axis. Next, for each fL > 1, let m,,(t, (3) denote the
level curve of met, (3) in the complex plane, i.e., m,,(t, (3) is an ellipse given by

_ \_ _ '. (x -- t)2 , y2 _ I
111,,(t, (3) = ,'" - x + IY· 2 -;- b2 -- 1\ 'a ,
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where

and p.,"" I).

(4.11 )

For each t f]2, we seek the largest value ofp., I such that 111,,(1, 13) C 1', .
This value of p." which we call A] ccc A ](1, 13, dl) is obtained when 111".(1, 13) is
tangent to the parabola y2 d]2.\ which defines 1']. In particular, as is
readily shown, for 132 t j32Al where M I + dI

2/2j32, A] is obtained by
making l11)t, 13) tangent to 1'] at the origin, and Al is given in this case by

f]21"! . (4.12)

For t > 132M, 111".(1, 13) will have exactly two points of intersection with 1'1'
I.e.,

will have exactly one (nonnegative) root for x, precisely when the discriminant
of the above quadratic in x. equals zero:

or equivalently, solving for b2,

Thus, with (4.11), the largest value of p.,
satisfies

2" "" t M
1I 0- 82 '

, (4.12')

which gives rise to a polynomial equation in Al of degree 6. It is apparent
from (4.12) and (4.12') that A] = AI(t, 13, dl) is in reality a function of
U0= t l /2/j3 and dl /j3, and we also write A] = AI(u, dl /j3). It is also clear
from (4.12') that Al is a continuous strictly increasing function of 1I. Next, to
obtain an upper bound for AI, one sees geometrically that forcing the
ellipse 111".(t, 13) to intersect the curve y = dl t l / 2 in the particular point (t, b)
must give an upper bound for AI' Thus, b = dl t l / 2 = j3t l /

2(U -- l/u)/2
implies Al < U, or equivalently
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Hence, A1(u, d11(3) is bounded, for fixed d11(3, as U~L co. Using this fact, it
follows from (4.12') that the above upper bound is asymptotically sharp:

(4.13)

Similarly, if Ao(t, (3, do) = Ao(u, do/(3) denotes the largest value of fL 1 such
that m~(t. (3) is contained in To for all t ? (32, the argument above directly
gIves

(~)(3,

Next, it is straightforward to deduce from (4.13) and (4.13') that

the last inequality following from our choice of do and dl .

Now, with the inequality of (4.4), we have

ill I,------
I SH(X) s,,(x)

I~I~ - e ." I r Ie-·r __I_I'
, ·\'n+lx) Sf/(x)

3
211"1-1 '

for any x ? 0 and any n ? O. In particular, for any t ? (32 (so that met, ,8)
lies entirely on the nonnegative axis),

X E met, (3), t P2
{-', 11 ? O.

In addition, we know that the rational function (llsn+l - I/sn) E ~Tn+l,2n+l

has, for any n ? no all its poles outside of T1 . Then, applying Walsh's Lemma
(cf. [16; Eq. (41), p. 250]) to this rational function on the set met, (3) yields

for all Z E mAP, (3), t ? (32, n ~:': no, where m,,(t, (3) denotes all points Z on or
inside m,,(t, (3) i.e.,

_ ( P) ~ \ _ .+. ,.(x - t)2 --1- y2 / II
In" t, {-'- /z -- X IJ • a2 'b2 ''''' \.
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Hence. given any E 0 sufficiently small, so that

«d1 d())(d] - do) E) < (2)1~.

it follows from (4.13 )-(4.14) that there is a ~ and a ii sufficiently large so that

(4.15)

for all 11 110 I, for all Z E rnAo(t, ~), and for all r ~2t12. Thus, since

for any,. I. then applying the inequality of (4.15) in the above sum and
summing the resultant geometric series gives

I I I I
I s,,"r(z) -- S,Jz)

)'

Consequently, letting,. ~ oc.

Now, by construction, the closed ellipses rnA (t, (3) trace out the set 7;\. i.e"
o

for every f3 O.

U {rnAo(r. (3)) TI)'
t:;;B'l

Hence, the set Utd2ii2 {rnA (t, f3} can be expressed as 7;1 _. C, where C CfE)
-9~ 0

is some compact set in the complex plane. Thus. (4.16) can be equivalently

expressed as

e ~I:
SrI dL",(To-C)

17 111) .

Recalling that the set G of Theorem 4.1 is a subset of TI) -- C with the excep­
tion of some compact set C, this implies that

__ I / ] 'II I [I I
lim sup) e -- - -2 ((/]]--= ((I',')'

rI---'>:.t: ')'n C:lJG~C') \ .

On the other hand. for any compact set C,

(4.17)

/11/

I \ = O.
S" 'LI(e)

(4.18)
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To see this, define °< 8= inf{i e~: : Z E C}, and p ','CC sup{,::: :::: E C}.
Because of the uniform convergence of Sn to CZ on C, then 8/2 .1',,(:::)1 for
a\l Z E C, all 11 ?;: 111 • Thus, for 11 ?;: max{p - 2. I1IL

2 0)

L "Ik''" p.1)-
k~,,+l

for all ::: E C. Thus, using Stirling's formula, (4.18) follows. Hence, combining
(4.17) and (4.18), we deduce that

lim sup Iii e
'f}-HJ:. III

(4.19)

Thus, letting both E --+ °in (4.19) yields

Finally letting dl --+ d and do --+ d* in the above expression then establishes

lim sup l
n->70

_' 1. /I'lle ,.. - --'I
Sn 'L

00
(G) \

! ( d + d* )2
2 d - d*

the desired result of (4.8). Of course, jf d* = 0, then

I
2'

But as [0, -:- oc) is a subset of G, it follows from (4.5) and the above inequality,
that

1
2

• \ I I,' ljll
hm sup I' e-: - - : I

n---7X III Sn i'LC1JG}~

I
2'

whence lim infn~x {I e: - 1/.1'" IIL
70

(G)P'1/ = t, the desired result of (4.9).
Q.E.D.

As a special case of Theorem 4.1, we have

COROLLARY 4.2. For any semi-infinite strip

IT ccc {z = x --,-- iy : x ?;: 0, Y iT},
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where 0 T OC.

SAFF A'\D VARGA

lim \'1'<
lHY II

/1 U I

.1'" L,(l7) \ 2 .

It is again natural to ask if the geometric convergence of (4.8 )-(4.9) of
Theorem 4.1 holds for similar unbounded domains in the complex plane. for
other Pade approximations of eO. Such a result. which would extend
Theorem 3.2 to larger sets in the complex plane, of course depends on a
precise knowledge of the location of the poles of other Pade approximations
of e- z, which seems not to be known in the general case. On the other hand.
the uniform convergence of Pade approximants to e-Z on [0, +- Cf)) of
Theorem 3.1 can be similarly extended to larger sets in the complex plane
for particular Pade approximations. as we now show.

THEOREM 4.3. Given any 0 with 0 !) 7Tj2. the sequenc/'\

{ RII I,n(Z):-'~_l and

cOI1l'erge uniformly to c Z on the sector So :z rciR
: i e 7Tj2 -- 0).

Proof It was originally shown by Birkhoff and Varga [I] that all the
Pade approximants R".,,(z) of e-Z are analytic in the right-half plane Re z ? 0,
and are bounded in modulus there by unity. More recently, Ehle [3] has
extended both of these results to {Rn-l.n(Z)}~~l and {Rn-2.n<Z)}~~2' Dealing
for definiteness with {Rn-l.n(Z)}~_1 . we thus have that each

fiz) 1'-: -- Rn_l.n(z)

is analytic in the open first quadrant S (z x ~ iy: x 0 and yO;.
and that sup{ In(z) : z E S; 2. for all n 1. Since the boundary of S
consists of the rays YJ {z x iy : x 0, Y= O} and

Y2 ,C~ {z = x + iy : x 0, .r ;3" OJ,

the harmonic measure w(z) of Yl with respect to S, defined as a function which
is harmonic and bounded in S and for which w(z) 1 for all z E int Yl and
w(z) =c 0 for all Z E int Y2 ' is obviously given by

w(Z)
2

1- -arg z.
7T

(4.20)

Then. by the Necanlinna Two-Constants Theorem (cf. [7, p. 41]), if

M , = sup{ilr'{z): : Z E int Yi:' I. 2.

then
I;,(z): for all z E S. (4.21)
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Strictly speaking the Two-Constants Theorem is stated for bounded domains.
Therefore, the validity of (4.21) follows by considering an appropriate
conformal mapping of S.

Now since M) = Y}n-l.n (cf. (2.5)), and M 2 ~ 2, it follows from (4.20) and
(4.21) that

for all =E S.

Thus, as arg(z) < 7T/2 in S,

all =E S.

Now, from Proposition 2.4, there exists an 110 > 0 such that Y}"-l.n < I for all
11 :?: 11(1. Thus, restricting z to be in the sector So f= = reiB : 0 ()
7T/2 - D} where 0 < D~ 7T/2, then

and, as the same result evidently holds for the reflected sector S6- ~= {=
rei8 : ~(N/2 - Dj ~ () ~ O}, we have

Thus, since Y}n-l, n -~ 0 as 11 -+ 00 from Proposition 2.4, then {Rn-l. nCZ)}~~l

converges uniformly to e Z on So ' the same conclusion being true also for
{RrH.n(=)}~oo2' Q.E.D.

ACKNOWLEDGMENT

The authors sincerely thank Mrs. Grace Bush of Kent State University and Professor
Arthur Price of the University of South Florida for their generous assistance in carrying
out various computer calculations.

REFERENCES

I. G. BIRKHOFF AND R. S. VARGA, Discretization errors for well-set Cauchy problems.
I, J. Math. and Phys. 44 (1965),1-23.

2. W. J. CODY, G. MEINARDUS, AND R. S. VARGA, Chebyshev rational approximations
to e-r in [0, -+- CD) and applications to heat-conduction problems, J. Approximation
Theory, 2 (1969), 50-65.

3. B. L. EHLE, A stable and Pade approximations to the exponential, SIAM J. Math.
Anal. 4 (1973), 671-680.

4. K. E. IVERSON, The zeros of the partial sums of e" Math. Tables Aids Compo 7 (1953),
165-168.



488 SAFF AND VARGA

5. J. D. LAWSON, Order constrained Chebyshev rational approximation, ll4ath. Comp.,
to appear.

6. G. MEINARDUS AND S. VARGA, Chebyshev rational approximations 10 certain entire
functions in [0. x), J. Approximation Theory, 3 (1970), 300-309.

7. R. NEVANLINNA, "Analytic Functions," Springer Verlag. New York, 1970.
8. D. J. NEWMAN, Rational approximation to e", J. Approximation Theory 10 (1974),

301-303.
9. D. J, NEWMAN AND T, J. RlVLli'., "The zeros of the partial sums of the exponential

function," J. ApproximaTion Theory,S (1972). 405-412.
10. D. J. NEWMAN AND T. J. RIVLIN, The zeros of the partial sums of the exponential

function, J. Approximation Theory, to appear.
II. H. PADE, "Sur la representation approchee d'une fonction par des fractions ration­

nelles," Thesis, Ann. de tEe. Nor. 9, 1892.
12. O. PERRON, "Die Lehre von den Kellenbriicken. 11," Teubner, Leipzig; 1929; reprint,

Chelsea, New York.
13. A. SCHONHAGE, Zur rationalen Approximierbarkeit von e 'libel' [0, x). J. Approxi-

mation Theory 7 (1973), 395-398.
14. R. S. VARGA, On higher order stable implicit methods for solving parabolic partial

differential equations, J. MaTh. and Phys. 40 (1961), 220-231.
15. R. S. VARGA. "Matrix Iterative Analysis," Prentice-Hall, Englewood Cliffs, NJ.

1962.
16. J. L. WALSH, Interpolation and approximation by rational functions in the complex

domain, in "Colloquium Publication," Vol. 20, Amer. Math. Soc., Providence, RI,
Fifth ed., 1969.


